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Abstract

Modern deep learning models often rely on spurious cor-
relations between data and labels that solely present in the
training data, resulting in biased performance and limited
generalization. Existing methods aimed at mitigating spuri-
ous correlations often make the impractical assumption that
developers have full knowledge of which attributes are spu-
riously correlated in the training data. We present CRAYON
(Correcting Reasoning with Annotations of Yes Or No),
which offers effective, scalable, and practical solutions to
refine models with spurious correlations using simple yes-
no annotations. CRAYON empowers both classical and
modern model interpretation techniques to not only iden-
tify but also guide model reasoning: CRAYON-ATTENTION
guides classic interpretations based on saliency maps to
focus on relevant image regions, and CRAYON-PRUNING
prunes irrelevant neurons identified by modern concept-
based methods to remove their influence. Evaluation of
CRAYON with the annotations collected from 2,875 partici-
pants highlights its remarkable ability to effectively mitigate
spurious correlations in practice, boosting the worst and
mean group accuracy of a smile classifier by 54.88pp and
16.72pp, respectively. Showcased through extensive evalua-
tion on three benchmark image datasets against six state-of-
the-art methods, CRAYON achieves performance compara-
ble or even superior to approaches that require more com-
plex human annotations, and vastly outperforms methods
that do not use human annotations.

1. Introduction

Deep learning models have achieved remarkable per-
formance, surpassing humans in image classification
tasks [13]. However, recent advancements in deep learn-
ing interpretation have discovered that these models often
make predictions based on irrelevant attributes [20, 51], re-
sulting in biased performance [48, 53, 58, 59], poor gen-
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Figure 1. CRAYON-ATTENTION guides a model to attend to rel-
evant image areas. CRAYON-ATTENTION redirects a smile clas-
sifier’s occasional incorrect focus from a person’s forehead to the
mouth. Similarly, it shifts a bird classifier’s attention away from
irrelevant background towards the relevant bird body.

eralization [34, 39], and reduced trustworthiness [16]. For
example, a model trained on an imbalanced dataset to clas-
sify smiling and non-smiling faces bases its predictions on
hair, which is irrelevant to smiling [20]. It is crucial to en-
hance these models so that their predictions rely on perti-
nent data features [34, 39]. Researchers address irrelevant
attributions by mitigating spurious correlations among data
attributes and labels in the training data through methods
such as balancing the training dataset [26, 33, 63] or intro-
ducing new loss terms [17, 29, 33]. However, these methods
make the impractical assumption that developers have
full knowledge of which attributes are spuriously corre-
lated in advance [2, 28]. Recent attempts to relax this as-
sumption have yielded less satisfactory results [3, 28, 64].

Therefore, it is essential to incorporate humans to effec-
tively rectify a model’s attention [45]. Some researchers
have collected ground truth attention maps, which indicate
where the model should or should not focus, and guide
the models’ saliency maps to resemble these ground truth



maps [9, 10, 40]. However, these methods require humans
to provide an accurate ground truth map for every train-
ing data point, which can be extremely time-consuming and
labor-intensive. Moreover, human-provided attention maps
have their inherent limitations, such as imperfect annotation
boundaries and inconsistency in data types between real-
valued model-generated maps and binary human-provided
maps with values of 0 or 1 [9].

To address the above research gaps, we present CRAYON
(Correcting Reasoning with Annotations of Yes Or No),
which makes the following contributions:

• Yes-No Annotations as a Simple, Scalable and Prac-
tical Strategy to Guide Model Reasoning. We intro-
duce the major idea that simple yes-no annotations on
model interpretations can offer an effective, scalable, and
practical solution to address critical limitations of exist-
ing methods that heavily rely on laborious annotations.
Our strategy empowers both classical and modern inter-
pretation techniques to not only identify but also rectify
model reasoning:
1. Guiding classic saliency map-based interpretations

to highlight relevant image regions. We propose
CRAYON-ATTENTION to guide a model to attend to
the relevant regions of images by using yes-no an-
notations on the relevance of saliency maps of each
image. CRAYON-ATTENTION guides the model at-
tention away from the areas highlighted in irrele-
vant maps, while preserving attention in the relevant
saliency maps (Sec. 3.2).

2. Pruning irrelevant neurons identified by modern
concept-based interpretations to remove their im-
pact. CRAYON-PRUNING identifies irrelevant neu-
rons in the penultimate layer of a model by presenting
the visual concepts responsible for highly activating
each neuron. These irrelevant neurons are then pruned
so that the model’s predictions are not influenced by
irrelevant concepts (Sec. 3.3).

• CRAYON effectively mitigates spurious correlations
with human annotations. We showcase CRAYON’s ef-
fectiveness, scalability, and practicality in refining model
attention through yes-no annotations from 2,875 partici-
pants. Remarkably, CRAYON achieves near-peak perfor-
mance with annotations for just 5% of the training data.
CRAYON significantly outperforms methods that do not
use human annotations, achieving up to 50.77pp higher
worst group accuracy and 15.78pp higher mean group ac-
curacy in a smile classifier. (Sec. 4).

• Extensive evaluation on three benchmark im-
age datasets against six state-of-the-art methods.
CRAYON achieves performance comparable to or even
surpassing existing approaches that require complex
annotations, and vastly outperforms methods that do not

use human annotations (Sec. 5).

2. Related Work
2.1. Aligning Model Reasoning with Humans

Various approaches have emerged to extend model inter-
pretation techniques beyond mere identification, aiming to
rectify model attributions as well [8, 15, 25, 43, 44, 65].
To better align model attributions with human intuition, re-
searchers have introduced interactive learning frameworks
that incorporate human revisions of models [21, 45, 55].
The efficacy of human feedback in guiding model attribu-
tions has been showcased in diverse domains, such as natu-
ral language processing [23, 24, 52, 62, 68] and visual ques-
tion answering [6, 36].

Concurrently, researchers have undertaken efforts to re-
fine vision models by collecting human annotations for
model attention. The RRR loss [40] was proposed to redi-
rect MLP models away from regions annotated by humans
as irrelevant, later extending its applicability to deeper CNN
models [9–11]. CDEP [38] and SPIRE [35] aim to reduce
the impact of irrelevant pixels by leveraging contextual de-
composition and masking specific objects in images, re-
spectively. Stammer et al. [54] refine models at both pixel
and concept levels by disentangling concepts within an im-
age. However, all these methods require humans to supply
ground truth attention maps for each image, which can be
prohibitively costly to obtain. To address this challenge,
some progress has been made by introducing simpler alter-
natives such as scribble maps [49] and bounding boxes [37],
which yet do not resolve the inherent limitations of human-
provided attention maps [9]. Building upon these advance-
ments, we further simplify human feedback to yes-no anno-
tations on model interpretation results.

2.2. Mitigating Spurious Correlations

A lot of efforts have been dedicated to mitigating spuri-
ous correlations in deep learning models to enhance fair-
ness [48, 53, 58], reliability [27], and generalizability [34].
Attributing spurious correlations to imbalances in train-
ing data [42], some researchers alleviate such issues by
reweighting or subsampling training data [19, 26, 28, 33,
61]. However, challenges arise when a training dataset lacks
spurious-free data. In response, some researchers opt to
create balanced training datasets by collecting or generat-
ing additional instances [5, 12, 18, 22, 32, 63]. Yet, these
approaches can be costly or impractical in real-world sce-
narios [46]. Various loss terms have been introduced to
counter the impact of spurious correlations [17, 29, 51, 66].
However, most of these methods require prior knowledge
about the attributes responsible for the correlations. Sev-
eral methods have been proposed to address such limitation
and have shown efficacy [3, 28, 64]. To achieve even higher



performance while overcoming all the aforementioned lim-
itations, we incorporate simple yes-no human annotations.

3. Methods
3.1. Overview

CRAYON guides a trained model to base its predictions on
relevant data areas by harnessing yes-no annotations, which
pertain to the relevance of the rationale behind the model’s
predictions, as revealed through model interpretations. In
this section, we describe (1) how simple yes-no annotations
for classic interpretations based on saliency maps guide the
model’s attention to the relevant regions — we call this
CRAYON-ATTENTION (Sec. 3.2) and (2) how we extend
our idea to modern concept-based interpretations to prune
the neurons activated by irrelevant visual concepts — we
call this CRAYON-PRUNING (Sec. 3.3).

3.2. CRAYON-Attention: Guide Saliency Maps

Generating saliency maps stands as one of the most com-
monly employed model interpretation techniques [47, 50].
For a given model and its training data x1, . . . ,xN , the
saliency map Mxn

highlights the regions within the im-
age xn that the model focuses on for its prediction. Once
saliency maps are generated for all N training data points,
we proceed to gather yes-no annotations regarding the rele-
vance of each map to the prediction task. We denote the set
of indices corresponding to training data with relevant and
irrelevant maps as R and I , respectively.

To refine the model using the yes-no annotations, we in-
troduce a loss function based on the energy loss [57]. For
the data point xn whose saliency map Mxn highlights the
relevant regions (i.e., n ∈ R), the model should generate
similar saliency maps following the refinement. Hence, we
formulate the loss function Lrel,n as follows:

Lrel,n =

H∑
h=1

W∑
w=1

[M ′
xn

]hw(1− [Mxn
]hw) (1)

where H and W represent the height and width of the
saliency maps, respectively, and M ′

xn
is the saliency map

for the model being trained and the data point xn. We clar-
ify that Mxn

is the saliency map for the original model be-
fore refining, and M ′

xn
is for the model being trained. For

better stability of the loss function, we normalize both Mxn

and M ′
xn

, scaling their values between 0 and 1 by dividing
each map by its maximum value.

For the data point xn with irrelevant saliency map (i.e.,
n ∈ I), the model should attend to the regions that are not
highlighted in the map Mxn

. In this regard, we construct
the loss function Lirrel,n as follows:

Lirrel,n =

H∑
h=1

W∑
w=1

[M ′
xn

]hw[Mxn
]hw (2)

Relevant

Neuron #609: Activated by Mouth Concept Neuron #0: Activated by Hair Concept

Irrelevant (pruned)

CRAYON-Pruning prunes neurons activated by irrelevant concepts

Figure 2. CRAYON-PRUNING prunes the neurons activated by ir-
relevant concepts in the penultimate layer and fine-tunes the last
layer. For each neuron in the penultimate layer of a smile classi-
fier, we generate image patches that summarize the visual concepts
responsible for the activation of the neuron. Left: Among these
neurons, neuron #609 is activated by mouth concept, which is rel-
evant to smile classification. Right: Neuron #0, on the other hand,
is activated by irrelevant hair concept and is pruned by CRAYON-
PRUNING.

While guiding the model to attend to the right regions,
we need to preserve the accuracy of the model’s predictions.
Therefore, we incorporate the prediction loss Lpred,n for
the data point xn:

Lpred,n =

K∑
k=1

−ynk log ŷnk (3)

where ynk is 1 if the label of the data xn is k and 0 otherwise
and ŷnk is the probability of the data xn being labeled as k
computed by the model being trained.

Summing up the loss functions, we obtain the loss Latt

that guides a model with yes-no annotations on saliency
maps,

Latt =

N∑
n=1

Lpred,n + α
∑
n∈R

Lrel,n + β
∑
n∈I

Lirrel,n (4)

where α and β are the hyperparameters that control the
weights of the loss terms.

3.3. CRAYON-Pruning: Prune Irrelevant Neurons

Neurons, also referred to as channels, in the penultimate
layer of CNN models are known to be activated by spe-
cific high-level visual concepts in the input data [4, 31].
Based on this finding, a model interpretation method that
summarizes the concepts responsible for a neuron’s activa-
tion as a collection of image patches has recently been pro-
posed [14]. These patches are generated by selecting the
images that most highly activate the neuron and cropping
out the corresponding region. For example, a neuron in the
penultimate layer of a smile classifier would have patches
corresponding to the mouth concept, indicating that the neu-
ron’s activation is attributed to the presence of a mouth



(Fig. 2, left). On the other hand, the patches of another
neuron in the same model might indicate that its activation
is attributed to hair (Fig. 2, right).

CRAYON-PRUNING identifies the neurons in the penul-
timate layer that are activated by irrelevant visual concepts
by presenting the image patches of each neuron and col-
lecting yes-no annotations on their relevance. For instance,
in the smile classifier shown in Fig. 2, the neuron activated
by the mouth concept is relevant while the neuron activated
by the hair concept is irrelevant. We prune the irrelevant
neurons and fine-tune the last fully-connected layer of the
model to remove the effect of the irrelevant concept on the
model’s prediction. For this fine-tuning process, we use the
prediction loss in Equation 3.

4. Evaluation with Human Annotations
To demonstrate that CRAYON provides effective, scalable,
and practical solutions for rectifying model attention, we
collect yes-no human annotations with 2,875 participants
on Amazon Mechanical Turk (MTurk).

4.1. Experimental Setup

4.1.1 Dataset

We train a smile classifier using the Biased CelebA
dataset [20]. Its training set demonstrates a spurious cor-
relation between hair color and smiling attributes. Specif-
ically, most images of individuals with black hair exhibit
smiling expressions, while those with blond hair are mostly
not smiling. This correlation causes the smile classifier to
occasionally make incorrect associations between the pre-
dictions and hair color. We provide details about the dataset
and model training in the Appendix.

4.1.2 Human Annotations

For CRAYON-ATTENTION, we visualize
Grad-CAM of each training image, where
regions that receive higher Grad-CAM atten-
tion are depicted more visible, while regions
with lower attention appear more transpar-
ent. Our visualization design improves over
the conventional method that highlights model-attended ar-
eas in red [1]. From our pilot study, we discovered that the
conventional red highlights could obscure image contents,
making it hard for participants to assess relevance.

We show each visualization to three participants and ask
yes-no questions about whether they can determine if the
person in the image is smiling. An image that receives
unanimous “yes” responses from all three participants (i.e.,
can determine smiling) is annotated as having a relevant
saliency map. Conversely, if at least two participants re-
spond with “no,” the image is annotated as having an ir-

relevant map. Images that do not meet these criteria are
excluded from guiding model attention due to the ambigu-
ity of the relevance of their Grad-CAMs. We opted not to
require three “no” responses to annotate a map as irrele-
vant due to our observation that some participants consider
a map relevant even when irrelevant areas are prominently
highlighted, as long as there is some attention on any facial
part, such as the nose, forehead, or ear. Hence, we relaxed
the requirement to a minimum of two “no” responses.

For CRAYON-PRUNING, for
each neuron in the model’s
penultimate layer, we generate
three image patches representing the visual concepts re-
sponsible for its activation. Each patch is shown to an indi-
vidual participant, and we inquire whether the patch implies
the presence of a smile. We annotate a neuron as relevant
if all three patches are labeled to be indicative of smiling;
otherwise, we annotate it as irrelevant.

4.1.3 Settings for CRAYON

CRAYON-ATTENTION fine-tunes the smile classifier for 10
epochs with a learning rate of 1e-5 and the hyperparame-
ters α and β in Equation 4 of 10000 and 100, respectively.
CRAYON-PRUNING prunes irrelevant neurons in the penul-
timate layer and trains the last fully connected layer for 50
epochs with a learning rate of 5e-6. Additionally, we eval-
uate CRAYON-PRUNING+ATTENTION, which prunes irrel-
evant neurons in the penultimate layer and then fine-tunes
the model using the loss function in Equation 41. CRAYON-
PRUNING+ATTENTION trains the model for 10 epochs with
a learning rate of 1e-5, α of 1000, and β of 20. In all meth-
ods, we use a batch size of 64 and the Adam optimizer with
a weight decay of 1e-4.

4.1.4 Compared Methods

To underscore the significance of human annotations, we
compare CRAYON with three state-of-the-art methods ad-
dressing spurious correlations without human annotations:

• JtT [28] upweights the loss of training data points mis-
classified by the original model.

• MaskTune [3] guides the model to learn diverse features
by masking regions highly attended to by the original
model.

• CnC [64] leverages contrastive learning to closely lo-
cate representations of data points with the same class
labels but different spurious features, which are identi-
fied using the original model.

1Neuron annotations must be applied before using attention annota-
tions, as the neuron annotations stem from the original non-fine-tuned
model. If we fine-tune the model with CRAYON-ATTENTION, the concepts
detected by each neuron will change and invalidate the existing neuron an-
notations.



Table 1. CRAYON effectively mitigates spurious correlations in a
smile classifier using yes-no human annotations. Both CRAYON-
ATTENTION and CRAYON-PRUNING+ATTENTION with attention
annotations for just 1,000 data points nearly reach their peak mean
group accuracy (MGA) performance. We run each method five
times with different random seeds and report the average values of
the WGA (worst group accuracy) and MGA.

Method #Annot. WGA MGA

Original - 32.60 73.71
CRAYON-ATTENTION 20,200 82.27 89.77
CRAYON-PRUNING 2,048 68.82 86.66
CRAYON-PRUNING+ATTENTION 22,248 87.48 90.43

CRAYON-ATTENTION 1,000 80.64 88.98
CRAYON-PRUNING+ATTENTION 3,048 82.91 89.80

JtT [28] 0 36.71 74.65
MaskTune [3] 0 37.72 78.85
CnC [64] 0 37.76 75.34
ERM 0 32.86 73.01

To ensure that the mitigation results are not simply due to
extended training, we also compare with the naive empirical
risk minimization (ERM) [41] approach that minimizes the
classification loss by training the model for more epochs.

The Appendix describes the methods’ training de-
tails. We could not compare CRAYON with the methods
that leverage complex human annotations (attention maps,
bounding boxes) because they either require proprietary ap-
paratus [9, 10] or have not been evaluated with actual hu-
man annotators [37, 40].

4.2. Results: Practical Effectiveness of CRAYON

Table 1 shows the performance of our methods using the
collected human annotations. In accordance with the es-
tablished practice in the literature of spurious correlation
research [41], we employ worst group accuracy (WGA)
and mean group accuracy (MGA) as the evaluation metrics.
Specifically, we first evaluate the model accuracy for each
of the four attribute groups: black hair + smiling, blond
hair + not smiling, black hair + not smiling, and blond hair
+ smiling. We then compute the minimum and mean accu-
racy values across these groups and denote them as worst
group accuracy (WGA) and mean group accuracy (MGA),
respectively. To ensure robustness, we run each method five
times with different random seeds and report the average of
the WGA and MGA values in Table 1; the Appendix pro-
vides the standard deviations.

Overall, all CRAYON approaches effectively guide the
smile classifier to rely on relevant regions, not spurious
correlations. Comparing to the unrefined original model
(Row 1), CRAYON-ATTENTION (Row 2) substantially en-
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Figure 3. Even with annotations available for just 5% of the
training data points, both CRAYON-ATTENTION and CRAYON-
PRUNING+ATTENTION nearly reach their peak performance.
CRAYON-PRUNING realizes its full effectiveness when annota-
tions are provided for most neurons in the penultimate layer.

hances WGA by 49.67 percentage points (pp), raising it
from 32.60% to 82.27%; and MGA by 16.06pp, increasing
it from 73.71% to 89.77%. CRAYON-PRUNING (Row 3)
also demonstrates improvements, achieving a 36.22pp in-
crease in WGA and a 12.95pp increase in MGA. CRAYON-
PRUNING+ATTENTION (Row 4), which combines both at-
tention and pruning approaches, elevates both WGA and
MGA beyond the capabilities of each individual approach,
elevating WGA to 87.48% and MGA to 90.43%.

Comparing CRAYON with methods that do not leverage
human annotations (Table 1: Row 7-9) underscores the im-
portance of incorporating humans in guiding model atten-
tion to relevant regions. JtT, which upweights the training
data misclassified by the original model, exhibits marginal
enhancement as the model misclassifies only 12 out of
20,200 training data points. Similarly, CnC, which uses
misclassified data as positive and negative samples for con-
trastive learning, achieves only limited improvement. The
constrained efficacy of MaskTune is attributed to the limita-
tion of its strategy, which redirects model attention to alter-
native areas even for the data with relevant attention maps.

4.3. Varying Number of Annotations

We evaluate how the number of annotations n impacts
CRAYON’s performance. For CRAYON-ATTENTION, we
randomly sample n images from the training set of the Bi-
ased CelebA dataset and compute both Lrel and Lirrel for
these n images along with their annotations. For CRAYON-
PRUNING, we randomly sample n neurons from the penul-
timate layer and prune the irrelevant neurons within this
sampled group of n. We additionally investigate CRAYON-
PRUNING+ATTENTION, where we use all 2,048 annota-
tions for neuron relevance while varying the number of an-
notations for model attention2. For each n value, we run the

2We elect to focus on varying the number of attention annotations based
on our observation that almost all pruning annotations need to be used for
CRAYON-PRUNING to be fully effective.



method five times with different random seeds and report
the average MGA and WGA values in Fig. 3.

Overall, the performance of all CRAYON meth-
ods improves as the number of annotations in-
creases. Notably, CRAYON-ATTENTION and CRAYON-
PRUNING+ATTENTION are effective even with a limited
number of annotations, achieving nearly peak performance
when annotations are available for only 5% of the training
data points (Table 1: Row 5,6). Specifically, with yes-no
annotations for 1,000 out of 20,200 training data points,
CRAYON-ATTENTION enhances the WGA and MGA
to 80.64% and 88.98%, respectively, while CRAYON-
PRUNING+ATTENTION enhances the WGA and MGA
to 82.91% and 89.80%, respectively. These values are
only marginally lower than the performance achieved with
annotations for all training data points. In contrast, the
performance of CRAYON-PRUNING is constrained unless
a substantial portion of neurons is annotated, underscoring
the importance of acquiring annotations for all neurons in
the penultimate layer.

5. Comparing CRAYON with Existing Methods

As most existing methods have not been evaluated with hu-
mans, we use machine-generated annotations to compare
CRAYON with them.

5.1. Experimental Setup

5.1.1 Datasets

In addition to the Biased CelebA dataset (Sec. 4.1.1), we
include two additional benchmark datasets, Waterbirds [41]
and Backgrounds Challenge [60]. The Appendix describes
more details about the datasets.

Waterbirds. The Waterbirds dataset combines bird pho-
tographs [56] with backgrounds [67] so that waterbirds and
landbirds appear more frequently in water (e.g., lake) and
land (e.g., forest) backgrounds, respectively. Bird classifiers
trained on this dataset would classify waterbirds and land-
birds based on the backgrounds rather than the bird bodies.

Backgrounds Challenge. Backgrounds Challenge ad-
dresses the problem that classifiers trained on the Ima-
geNet [7] dataset often inappropriately base their predic-
tions on image backgrounds, rather than foreground objects.
Aiming to correct models to base their predictions on the
foreground objects, the challenge introduces the ImageNet-
9 (IN-9) dataset, a subset of ImageNet with nine coarse-
grained classes. As it is hard to specify groups for image
backgrounds, the Backgrounds Challenge assesses whether
a model grounds its predictions in relevant foreground areas
using datasets created by transforming image backgrounds:
• Only-FG dataset removes the image backgrounds by col-

oring them in black.

• Mixed-Rand dataset shuffles the background across all
images in the IN-9 test dataset to decorrelate background
and foreground.

Accordingly, in our work, we use accuracies on the Only-
FG and Mixed-Rand datasets as our metrics; higher accu-
racy values on these datasets indicate that the model appro-
priately attends to foreground objects.

5.1.2 Compared Methods

Original Models. For consistent results, we train five mod-
els for the Biased CelebA and Waterbirds datasets; the five
models differ only in the random seed, which would result
in five different models. For the Backgrounds Challenge,
we use the model released on the challenge repository. We
refer to all these models as the original models, meaning no
mitigation has been applied.

State-of-the-art Methods. In addition to JtT, MaskTune,
CnC, and ERM (Sec. 4.1.4), we examine three state-of-the-
art techniques that require complex annotations3:
• RRR [40] collects ground truth maps that annotate irrel-

evant pixels in the images and guides the model not to
attend to the irrelevant pixels.

• GRADIA [10] identifies the images for which the original
model generates irrelevant saliency maps or incorrectly
predicts, collects ground truth maps of relevant pixels,
and aligns the model’s attention with the collected maps.

• Bounding Box [37] collects bounding boxes that cover
the relevant regions of each image and guides the model
to keep its attention within the boxes.

The Appendix describes training details for these methods.

5.1.3 Settings for CRAYON

For the Biased CelebA dataset, we run all our methods with
the same setup described in Sec. 4.1.3. For the Waterbirds
dataset, CRAYON-ATTENTION and CRAYON-PRUNING are
trained for 10 epochs using the Adam optimizer with a
learning rate of 5e-5 and a batch size of 128. CRAYON-
PRUNING+ATTENTION uses the same settings as these
methods, except for the learning rate, which is set to 5e-
6. We set α and β for as 500 and 25, respectively. For the
Backgrounds Challenge, we train all CRAYON methods for
10 epochs with a batch size of 256 using the SGD optimizer
with a learning rate of 5e-6 and a weight decay of 1e-1. We
set α as 0.1 and β as 0.25 for CRAYON-ATTENTION and α
as 0.2 and β as 0.5 for CRAYON-PRUNING+ATTENTION.

3We tried RES [9] on our datasets and determined that it was compu-
tationally prohibitive. The algorithm did not finish one iteration even after
3 hours on an NVIDIA A6000 GPU; 2,205 iterations are needed for the
Biased CelebA dataset.



Table 2. CRAYON uses simple yes-no annotations to effectively mitigate spurious correlations in the models for Biased CelebA, Waterbirds,
and Backgrounds Challenge datasets (abbreviated as Backgrounds; comprising Only-FG (OF), and Mixed-Rand (MR) as described in
Sec. 5.1.1.). CRAYON achieves performance comparable or superior to existing state-of-the-art approaches that require more complex
annotations, securing either the best or second-best accuracies. WGA denotes worst group accuracy; MGA denotes mean group accuracy.

Method Annotation Biased CelebA Waterbirds Backgrounds

WGA MGA WGA MGA OF MR

Original - 28.29 71.73 25.31 67.84 85.75 78.27

CRAYON-ATTENTION Yes-No 74.41 87.48 47.91 74.28 86.41 81.79
CRAYON-PRUNING Yes-No 69.30 84.60 49.75 76.39 84.91 79.93
CRAYON-PRUNING+ATTENTION Yes-No 79.44 88.03 60.82 78.15 86.87 82.63

RRR [40] Map 50.86 79.47 41.03 76.05 86.67 82.12
GradIA [10] Yes-No, Map 41.80 77.36 44.39 76.54 86.78 81.29
Bounding Box [37] Bounding Box 74.28 86.97 51.28 78.98 86.66 82.93

JtT [28] - 37.12 74.41 33.64 72.65 85.85 78.38
MaskTune [3] - 32.11 77.34 32.11 73.63 84.62 78.25
CnC [64] - 34.70 73.28 37.16 73.08 85.14 78.49
ERM - 30.40 71.33 31.71 71.79 85.91 77.97

5.1.4 Machine-Generated Annotations

For a fair and scalable comparison, we algorithmically gen-
erate annotations for CRAYON and the compared methods.
For the Biased CelebA dataset, in which all the images are
aligned based on the positions of two eyes [30], we annotate
the relevance of Grad-CAM of an image as yes if the high-
est attention value falls on the mouth or eyes areas, while
less than half of this value is outside the central face, and no
if the highest attention value is located elsewhere and the
mouth area gets less than 80% of it; otherwise, we do not
use the image for guiding model attention. To identify rele-
vant neurons for CRAYON-PRUNING, we forward all train-
ing data through the model and collect 20 image patches
for each neuron in the penultimate layer that summarize the
visual concepts responsible for the neuron’s activation. We
annotate a neuron’s relevance as yes if all its patches contain
mouths and no otherwise. We generate the ground truth at-
tention maps and bounding boxes required by the compared
methods to cover mouths.

For the Waterbirds dataset, which provides segmentation
maps of bird bodies for each image, the relevance of Grad-
CAM of an image is labeled as yes if its segmentation map
and Grad-CAM overlap more than 70% and no if they over-
lap less than 30%; otherwise, the image is not used for guid-
ing model attention. For CRAYON-PRUNING, we collect 20
image patches for each neuron in the penultimate layer and
label the neuron’s relevance as yes if more than 70% of the
patches pertain to bird bodies and no otherwise. The pro-
vided segmentation maps serve as the ground truth attention
maps, and we draw boxes surrounding the maps to generate
the bounding boxes for the competitors.

For the Backgrounds Challenge, we employ the provided
segmentation maps for foreground objects. An image’s
Grad-CAM is labeled as relevant if its overlap with the im-
age’s segmentation map exceeds 50%, and irrelevant if the
overlap is less than 20%. For CRAYON-PRUNING, a neuron
is labeled as relevant if over 95% of its 20 image patches
pertain to foreground objects, and irrelevant otherwise.

5.2. Results: Comparable or Outperforms SOTA

Table 2 compares our methods with state-of-the-art methods
on the Biased CelebA, Waterbirds, and Backgrounds Chal-
lenge. For each original model, we conduct experiments
with five different random seeds and report the average of
the evaluation results.

Overall, our methods based on yes-no annotations
achieve comparable or even better performance than other
competitors that require more complex human interven-
tion. For the Biased CelebA dataset, comparing with the
original models (Row 1) demonstrates the effectiveness
of both CRAYON-ATTENTION and CRAYON-PRUNING
in mitigating spurious correlations, providing a signifi-
cant boost to the worst group accuracy (WGA) by 46.12
percent points (pp) (74.41% for CRAYON-ATTENTION
vs 28.29% for original) and the mean group accuracy
(MGA) by 15.75pp (87.48% for CRAYON-ATTENTION
vs 71.73% for original). Combining these two ap-
proaches into CRAYON-PRUNING+ATTENTION brings fur-
ther improvement, achieving WGA and MGA values of
79.91% and 87.98%. CRAYON-ATTENTION and CRAYON-
PRUNING+ATTENTION outperform all competitors that ex-
ploit ground truth maps and bounding boxes with richer in-



formation, in terms of both WGA and MGA. We attribute
the superiority of our method to the limitations inherent in
binary ground truth maps and boxes. To be specific, the
maps and boxes are represented as binary values of 0 and
1, while the model-generated saliency maps consist of con-
tinuous real numbers. This inconsistency degrades the per-
formance of the model attention guidance [9]. CRAYON
resolves the challenge by using the saliency maps of the
original model instead of binary ground truth.

CRAYON-PRUNING+ATTENTION demonstrates the ef-
fectiveness in mitigating spurious correlations also for
the Waterbirds dataset, enhancing the original mod-
els’ WGA from 25.31% to 60.82% and MGA from
67.84% to 78.15%. While the individual performances of
CRAYON-PRUNING and CRAYON-ATTENTION are lower
than some competitors, combining the two methods to
CRAYON-PRUNING+ATTENTION complements their limi-
tations, achieving the best WGA and the second-best MGA
values among all the compared methods.

For the Backgrounds Challenge, CRAYON-
PRUNING+ATTENTION achieves the best accuracy on
the Only-FG dataset and the second-best accuracy on the
Mixed-Rand dataset among all the compared methods,
demonstrating its effectiveness in multi-label classification
tasks. It boosts the accuracy on the Only-FG dataset from
85.75% to 86.87% and on the Mixed-Rand dataset from
78.27% to 82.63%. The underperformance of JtT, Mask-
Tune, and CnC that do not use any annotations for attention
guidance underscores the importance of incorporating
human annotations in mitigating spurious correlations.
The limited performance of JtT and CnC are attributed
to the small number (only 2%) of the training data points
misclassified by the original model. MaskTune’s lower-
than-original performance suggests its potential reliance
on a large number of training data points, as a higher
performance was reported only for the setting where four
times of training data points were used [3].

We also qualitatively evaluate CRAYON-ATTENTION, as
shown in Figure 1. For a model that irrelevantly attends to
the forehead of an image from the Biased CelebA dataset,
CRAYON-ATTENTION fixes its attention to the mouth. Sim-
ilarly, CRAYON-ATTENTION rectifies the attention of a bird
classifier that initially focuses on the background of a bird
image to the bird’s body.

5.3. Ablation Study

We conduct an ablation study to investigate the impact of
the two proposed loss terms, Lrel and Lirrel, on CRAYON-
ATTENTION’s performance. We deactivate one of the two
loss terms by setting either α or β in Equation 4 to 0. The
results are shown in Table 3.

Overall, removing either of the two loss terms de-
grades the performance of CRAYON-ATTENTION, under-

Table 3. Ablation study demonstrates the impact of two loss terms,
Lrel and Lirrel, on the performance of CRAYON-ATTENTION

(row 1). Lrel notably enhances overall performance by offer-
ing substantial guidance on the model’s attention (row 2). This
guidance is significantly stronger compared to the effect of the
loss term for irrelevant annotations, Lirrel, which directs attention
away from irrelevant image regions (row 3). BG stands for Back-
grounds Challenge, OF for Only-FG, and MR for Mixed-Rand.

Lrel Lirrel

Biased CelebA Waterbirds BG

WGA MGA WGA MGA OF MR

✓ ✓ 74.41 87.48 47.91 74.28 86.41 81.79
✓ 62.09 84.12 36.48 72.74 86.27 81.61

✓ 42.79 75.62 32.87 71.85 86.14 79.81

scoring the contributions of both Lrel and Lirrel in guid-
ing model attention. When we deactivate Lirrel and rely
solely on Lrel (Row 2), WGA and MGA experience de-
clines of 12.32pp (from 74.41% to 62.09%) and 3.36pp
(from 87.48% to 84.12%) for the Biased CelebA dataset
and 11.43pp (from 47.91% to 36.48%) and 1.54pp (from
74.28% to 72.74%) for the Waterbirds dataset. For the
Backgrounds Challenge, the accuracies on the Only-FG and
Mixed-Rand datasets decrease from 86.41% to 86.27% and
from 81.79% to 81.61%, respectively.

Excluding Lrel from Latt (Row 3) also significantly
impairs the performance. For the Biased CelebA dataset,
WGA decreases by 31.62pp (from 74.41% to 42.79%)
and MGA by 11.86pp (from 87.48% to 75.62%), and for
the Waterbirds dataset, WGA declines by 15.04pp (from
47.91% to 32.87%) and MGA by 2.43pp (from 74.28% to
71.85%). Likewise, for the Backgrounds Challenge, the ac-
curacy on the Only-FG dataset decreases by 0.27pp (from
86.41% to 86.14%) and the accuracy on the Mixed-Rand
dataset by 1.98pp (from 81.79% to 79.81%). These results
show that Lrel plays a significant role in guiding model at-
tention, while Lirrel provides additional guidance by direct-
ing attention away from irrelevant image areas.

6. Conclusion
We propose CRAYON, which mitigates spurious correla-
tions in image classifiers using simple yes-no annotations.
CRAYON-ATTENTION collects yes-no annotations on the
relevance of saliency maps and refines models to attend
to the relevant areas, while CRAYON-PRUNING identifies
and prunes irrelevant neurons in the penultimate layer of
the models based on the yes-no annotations on the rele-
vance of the neuron activation. Evaluation with the large-
scale human annotations demonstrate CRAYON’s practical-
ity, scaliability, and effectiveness in mitigating spurious cor-
relations. Evaluation against state-of-the-art methods shows
that CRAYON achieves comparable or even better perfor-



mance than the competitors that require much more com-
plex annotations.
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